This week has been a bumper week in London for science public engagement events. I’ve been fortunate to go to two of them: Twilight Science as part of the Summer Science Exhibition at The Royal Society, and Wrong! at Wellcome Collection. Two public-facing science events done in different ways.
Continue reading “Summer Science at the Royal Society / Wrong! at the Wellcome Collection”
Learn from the experts: Create a successful blog with our brand new course
Are you new to blogging, and do you want step-by-step guidance on how to publish and grow your blog? Learn more about our new Blogging for Beginners course and get 50% off through December 10th.
WordPress.com is excited to announce our newest offering: a course just for beginning bloggers where you’ll learn everything you need to know about blogging from the most trusted experts in the industry. We have helped millions of blogs get up and running, we know what works, and we want you to to know everything we know. This course provides all the fundamental skills and inspiration you need to get your blog started, an interactive community forum, and content updated annually.
Science Haiku
Cavefish body clocks
Tick, tick, tick in the darkness
Why there you might ask?
Science’s Silliest Stories – Science Museum Lates
Last week I ran an event at the adult-only Lates event at London’s Science Museum titled Science’s Silliest Stories. In it I told a story of some of the odder pieces of research that have been published recently to draw out some of the more curious sides of scientific research. I really enjoyed the evening. It was great to see friends who came and the audiences seemed to really get into it – perhaps the alcohol helped! Unfortunately I didn’t manage to record it (mainly to show my wife who was away with work), but here is essentially what I said:
Science’s Silliest Stories
Hello and welcome to science’s silliest stories.
In the next 20 minutes or so I will be regaling you with some of the sillier stories from science and scientific research. I’ll take you on a journey through real recent research, from animal sex, penises and vaginas, through to findings about wobbly pregnant women, levitating frogs and cheesy mosquitos. I’ll mention Sarah Palin’s now infamous quote about fruit fly research but hopefully leave you on a positive note that scientists aren’t always out to waste your tax money.
Continue reading “Science’s Silliest Stories – Science Museum Lates”
How do you study circadian rhythms?
Science requires controlled and well-planned experiments. Without correct set-up, results from experiments may not be reliable enough to be trusted. Circadian biology is no different in that regard, and especially when trying to find out if something has a working circadian clock, controlled experiments are crucial. Continue reading “How do you study circadian rhythms?”
Models in research
A lot of research (especially in biological sciences) is conducted using ‘models’. Like models in the fashion world, research models serve as a showcase of a specific (trait) or phenomena and can be a very useful tool for those scientists who are interested in that problem.
Continue reading “Models in research”
What is a circadian clock?
Broadly speaking, the circadian clock is a cell and molecular feedback loop – inside the cell, a bunch of proteins that interact with genes and DNA, which in turn interact back with those original proteins. This cellular feedback loop controls those outward and apparent rhythms we are aware of, like jet lag and waking, as well as many more we may be unfamiliar with, but it isn’t just humans who have a body clock, all life on planet Earth has one, although its workings aren’t exactly the same in all life-forms.
In animals, the key players are genes called clock, bmal, period and cryptochrome. There are actually multiple versions of the genes, named numerically (clock1a, bmal2, period3 etc) and shortened to 3 or 4 letters (clk1a, bmal2, per3 etc). To explain the cycle, we need to start with clock and bmal and go twice around the feedback loop, each stage showing the effect of the previous.
Firstly, CLOCK and BMAL proteins (CLK and BMAL; by consensus gene names are in italics and PROTEIN names are in uppercase), interact in the cell, joining together to turn on period and cryptochrome genes. As the genes are turned on, they are transcribed by the cell, eventually begetting proteins, PER and CRY proteins. These proteins interact with CLK and BMAL proteins to make CLK and BMAL less activating, repressing CLK and BMAL.
Secondly, as CLK and BMAL are now repressed, the turning on of period and cryptochrome genes is stopped. Fewer PER and CRY proteins are generated by the cell. Fewer PER and CRY proteins means less repression of CLK and BMAL, and so CLK and BMAL are released to begin another cycle.
The overall effect is similar in plants and other organisms: Activator proteins turn on repressor genes, these repressor genes are translated into repressor proteins by the cell and repress the activator proteins and so on. These proteins and genes in the clock aren’t the same in all organisms, but they play similar roles turning on or off genes, modifying the activity of proteins, like how David de Gea and Manuel Neuer are not the same player, but play similar roles for their teams. The fact that clocks have a similar feedback mechanism but consist of different components in the different branches of life adds to the idea that circadian clocks must be evolutionarily adaptive. It is an example of convergent evolution, where two separate species look similar without being evolutionarily related, such as how dolphins and sharks look fairly similar and are adapted to the broadly similar environments but are completely different species. In this case, evolution has dictated that the best body shape for fast and efficient swimming in water is a streamlined oval. In the case of circadian clocks, we can suggest that evolution has dictated that the best way of organising your physiology and behaviour is through the use of a molecular feedback loop which acts within the cells of the body.
Zoos: Thoughts from time as a volunteer
Zoos are the place where a lot of people come into contact with exotic animals for the first time – especially in Britain, Western Europe and North America, where much of our ‘wild’ life has been decimated over time as humans have colonised the landscape. Exotic creatures seem to enthral people, especially children, and zoos can have a magical grasp over adventurous and inquisitive young minds – including those of sometimes world-weary adults.
Continue reading “Zoos: Thoughts from time as a volunteer”
Why is Darwin more famous than Wallace? Cultural survival of the fittest
Why is Darwin is more famous than Wallace?
BBC – Why does Charles Darwin eclipse Alfred Russel Wallace?
Why Evolution is True – Why is Darwin more famous than Wallace?
Essentially it was because of the impact of Origin of Species.
With their joint paper, Darwin and Wallace can be thought of a co-proposers of evolution by natural selection. Unfortunately for Wallace’s fame stakes, this joint paper did not arouse much interest at the time. Origin, a year later, with Darwin’s name at the forefront and Wallace being deferential to his colleague, captured both scientist and public imagination. From this, Darwin was the one being ridiculed in cartoons as a half-ape, and Darwin was the name people associated with evolution. It’s also interesting to note that natural selection (but not evolution) went through somewhat of a out-of-fashion period in the early 1900s, which affected Wallace’s fame while not as severely affecting Darwin’s, whose fame stemmed from bringing evolution as a whole to the attention of the world. Later, the Modern Synthesis, a sort of union (or reunion) of evolution, natural selection and genetics in the 1930s, seems to have remembered the contributions of Darwin whilst largely forgetting Wallace’s. As we inherit this synthesis of evolutionary thought and its associated history, we cast Wallace’s role by the wayside – a fitting and ironic example of cultural evolution and survival of the fittest.
Wonders of Life
Have you seen any of the BBC’s new series, Wonders of Life? If not, I’d really recommend you catch it – it’s available on iPlayer until the 3rd of March.
I’ve heard some criticism of it – that it’s too Physics-y or that Brian Cox just isn’t David Attenborough or the changing locations is annoying – and I can understand where they come from. But I think it’s great. Yes, it’s complicated and I didn’t fully understand how life links back to the Physics and energy bits, but it made me really think. He’s talking about the origins of life and the universe – it’s supposed to be mind-boggling! I expected it to be a sort of ‘new’ David Attenborough series and perhaps that’s why some people criticise it. But I found it a refreshing take on Natural History, going beyond a description of life and presenting life on Earth in it’s most fundamental form.
Continue reading “Wonders of Life”
Wallace 100 @ NHM
The introductory posts to this blog has been quite timely – this week the Natural History Museum in London are marking the anniversary of Alfred Wallace’s death with an exhibition of his work and a display of his portrait to be hung right next to his colleague, Charles Darwin. Wallace 100 will open this week to celebrate Wallace as a co-discoverer of the process evolution by natural selection. It will make an interesting visit I’m sure!